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Abstract 

It is proved that a semilinear function on a complex banach space is not differentiable 
according to the usual definition of differentiability in the calculus on banach spaces It 
is shown that this result makes the calculus largely inapplicable to the solution of varia- 
tional problems of quantum mechanics. A new concept of differentiability called semi- 
differentiability is defined. This generalizes the standard concept of differentiability in a 
banach space and the resulting calculus is particularly suitable for optimizing real-valued 
functions on a complex banach space and is directly applicable to the solution of quantum 
mechanical variational problems. As an example of such application a rigorous proof of a 
generalized version of a result due to Sharma (1969) is given. In the course of this work a 
new concept of prelinearity is defined and some standard results in the calculus on banach 
spaces are extended and generalized into more powerful ones applicable directly to pre- 
linear functions and hence yielding the standard results for linear functions as particular 
Cases. 

1. Introduction 

The best  solut ions o f  p rob lems  b o t h  in industry  and in science have necess- 
arily an op t imal  character:  f rom the  available solut ions one  picks ou t  the one  
which  maximizes  the good aspects (prof i tabi l i ty ,  eff ic iency,  etc. ,  in indust ry  
and exactness,  s implici ty,  etc. ,  in science). Where the exact  so lu t ion  o f  a 
physical  p rob lem is supposed to be given by  the  solut ion o f  a certain differential  
equa t ion  wi th  appropr ia te  boundary  condi t ions  and it is not  possible or 
feasible to solve this equa t ion  exact ly ,  approx imate  solutions can o f t en  be 
obta ined  by  f inding a funct ional  on the  space o f  acceptable  funct ions  which  
has a s ta t ionary value at the  exac t  solut ion and then  f inding the s ta t ionary 

© 1975 Plenum Publishing Corporation. No part of  this publ icat ion may be reproduced,  
stored in a retrieval system, or t ransmit ted,  in any  form or by any means, electronic, 
mechanical,  photocopying,  microfilming, recording, or otherwise, wi thout  wri t ten 
permission of the publisher. 

323 



324 C. S. S H A R M A  A N D  I. R E B E L O  

value in a suitable subspace. One can obtain a good estimate of the quality of 
the approximation if the variational method provides also some means of 
putting bounds on the errors. Optimization problems also arise in physics 
because laws of nature invariably seem to have an extremum character: example, 
the principle of  least action. 

Differential calculus on banach spaces developed in the 1920s by Fr6chet 
and others is the vehicle of modern theory of optimization. Engineers, control 
scientists, numerical analysts and a variety of other technologists are finding 
this calculus an indispensable tool of their respective trades. Theoretical physics 
now is almost completely quantum physics and though quantum physics is 
formulated in a hilbert space which is necessarily also a banach space, the 
differential calculus on banach spaces is rarely used by theoretical physicists. 
The purpose of this paper is to investigate the reasons for the extraordinary 
neglect of this calculus by theoretical physicists and to propose a modified 
calculus on complex hilbert spaces which is likely to be directly useful in the 
solution of optimization problems of quantum physics. 

When the banach space is over the real field and is one dimensional, real 
functionals on the banach space can be looked upon as a real function of one 
real variable (f: R -~ R). The first and higher derivatives of such functions, if 
they exist, in traditional elementary calculus are functionsf ' :  R -~ R and, in 
general,f (n): ~ -+ ~.  The first derivative in a certain sense measures the rate 
of change in the value of f as the argument of  the function undergoes a small 
increment. A stationary point (or critical point) of the function is, by definition, 
a point x E N such that f ' (x)  = 0; the nature of the stationary point (maximum, 
minimum, or point of inflexion) is determined by examining the higher deriva- 
tives. When the banach space is over the real field and of dimension n (finite), 
a real functional on the space can be looked upon as a function f: Nn .+ N, that 
is, a real function of n real variables. Now from any point x E N n one can move 
in infinitely many directions and the rate of change in f (x)  would, in general, 
be different in different directions. However, i f f  is sufficiently smooth, in 
traditional elementary calculus all these infinitely many rates of change are 
known if one knows the n partial derivatives or, in other words, if one knows 
the "grad" (defined symbolically as Zn= 1 fi  (b/bxi) where [is the unit vector 
in the direction of the ith coordinate axis in a cartesian frame) of the function 
at x: the directional derivative (the rate of change) of the function in the direction 
of any unit vector d is simply d. gradf(x). It is intuitively obvious (particularly 
when n = 3 and one looks upon R 3 as a copy of the real physical space) that 
the rate of change of the function is a local property of the function on the space 
and does not depend on the choice of a coordinate system. In traditional 
elementary calculus, grad is usually first defined with the help of a particular 
choice of coordinates and then one proves that grad f(x) ,  if it exists, is indepen- 
dent of  the choice of  the coordinate system. The greatest advantage of the 
calculus on banach spaces is that it avoids much of this wasteful procedure by 
using methods which are not only coordinate free but valid also for spaces of 
any dimension (finite or infinite) and are equally applicable to banach spaces 
over any field (real, complex, or some other). In particular if the banach space 
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has a positive definite hermitian form (a generalization of the elementary "dot 
product") defined on it, the definition of grad does not depend on partial 
derivatives or on the choice of a particular coordinate system. One has to 
become familiar with a few new concepts but the analytic power provided by 
these concepts makes such a task very much worthwhile. 

The optimization of functionals has always been an important method for 
finding approximate solutions in quantum mechanical problems, but as already 
stated earlier one does not find many examples of the use of the calculus on 
banach spaces for the study of this method in quantum theory. The reason for 
this surprising fact is that a semilinear (which is what Dirac calls "antilinear") 
functional on a complex hilbert space is not differentiable according to the 
definition of differentiabflity in the calculus on banach spaces. Since much of 
the structure of a complex hilbert space originates from the hermitian product 
which is semilinear in one of the two variables, most of the functionals which 
occur in quantum mechanical problems are not differentiable. This difficulty 
can be overcome either by reducing the problem to one in a real hilbert space 
(Sharma and Rebelo, 1973a, b) where semilinearity becomes identical with 
linearity and the difficulties vanish or by a suitable modification of the con- 
cept of differentiability so that it may become possible for semilinear functionals 
to have derivatives and then the resulting modified calculus can be used directly 
to study optimization problems in complex hilbert spaces. We follow the latter 
alternative in this paper. By suitably amending the definition of differentiability 
we obtain a new concept which we call semidifferentiability and which leads to 
a new calculus on complex banach spaces. We also study some of the applica- 
tions of this new calculus to optimization problems in quantum theory. 

In the next Section we recapitulate some definitions and results which are 
well known and generalize them to get the new concept of prelinearity and 
results applicable to prelinear functions. Where the proof of the generalized 
version is very similar to that of the standard version of a proposition we 
merely give the crucial step. In Section 3 we prove that a semilinear functional 
on a complex banach space, except in the trivial case, is not differentiable and 
then we modify the definition of differentiabflity and obtain some basic results 
of the new calculus. In Section 4 we give some applications of this calculus. 

2. Recapitulation and Generalization of Some Standard Definitions 
and Results 

We collect below the definitions [D], propositions [P] and observations [O] 
we need for our work. The concept of prelinearity is new and therefore all 
propositions involving this concept are generalizations of established results. 
In what follows, all vector spaces unless specifically stated otherwise are over 
the complex field. 
[D1] A func t ionf f rom a vector space V1 to another vector space Ve is said 
to be linear if 

f(x +y) =f(x) +fO') Vx,y ~ v~ 
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and 

f ( a x )  = a f (x )  V a  E C  and Vx E V1 

[D2] A f u n c t i o n f  from a vector space V 1 to another vector space V2 is said 
to be semilinear ff 

f(x +y) =f (x )  + f l y )  vx ,y  ~ Z~ 

and 

f ( ax )  = ~ f (x )  Va E C and Yx E V 1 

[D3] A function f f rom a vector space V 1 to a normed space V2 is said to be 
prelinear if 

f ( x  + y )  = f ( x )  + f ( y )  

and 

tkf(ax)ll = talltf(x)ll v ~ c  a n d V x  e VI 

[O 1 ] Whenever the range of a linear or a semilinear function lies in a normed 
space, the function satisfies the criterion of  being prelinear. 
[D4] A functional f on a vector space V is a function from V to C. 
[DS] A linear (or semilinear or prelinear) f u n c t i o n f  f rom a normed space V1 
to another normed space V2 is said to be bounded if there exists a real number 
M such that 

l[f(x)ll <MIIxtl  Vx ~ gl  

[I)6] A linear (or semilinear or prelinear) function f f rom a normed space V1 
to another normed space V 2 is said to be continuous at a point x o E V1 if 
given a real positive number # there exists a real positive number 8 such that 

llx -Xol t  < 8  ~ Ill(x) - f ( x o ) l t  < # 

[P1 ] L e t f  be a prelinear function f rom a normed space N1 to another normed 
space N2. The following assertions about f are equivalent: 

(a) f is continuous at a point x o E N 1 
(b) f i s  bounded 
(c) f i s  continuous at every point x @NI 

Proof. Suppose f is continuous at x o. This implies that given e > 0, there exists 
a real 6 > 0 such that 1[ x - Xo[[ < 8 =* []f(x - Xo)1[ < e. But tl Xo - (Xo - 
(8t2tlx ll)x)1t = 8t2 < 8 =* IIf(xo - Xo + (812 Ilxll )x)11 < e ~ llf(x)I1 < 2el8 ilxtt. 
H e n c e f i s  bounded by 2ef8. Thus (a) =* (b). 

Suppose f is bounded. Hence there exists a real number M such that [If(x - 
Xo) !1 ~ M  llx - xoll. Given e > 0 take 6 = elM. Then Ilx - xoll < 8 ~ II f ( x  - 
Xo) I! < e .  Hence f i s  continuous at x where x is any point o f N  1 . Thus (b) 
(c). 

(c) obviously implies (a). 
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[D7] A normed vector space which is complete in the metric topology induced 
by the norm is called a banach space. 
[D8] Let N1 andN 2 be two normed spaces. The space of all functions from 
N1 to N 2 will be denoted by (Na, N2). The subspace of all bounded prelinear, 
linear and semilinear functions from N 1 to N 2 will be denoted by#C~N1, N2), 
~---~(N 1 , N2) and 5g~(N1, N2) respectively. 
[P2] Let N1 and N 2 be normed spaces. Then # ~ ( N 1 ,  N2) is a normed space. 
If in addition N2 is a banach space, then so also is ~ g ( N a ,  N2). 

Proof The verification of the fact that #.LE(N1, N2) is a vector space is trivial. 
Let f •  #-W(Nt, N2). It is easy to verify that 

Ilftl = sup  l l f (x ) t t  
ItxiI=l 

x E N  1 

defines a norm on ~ ( N 1 ,  N2), hence ~ q ( N  1 , N2) is a normed space. Finally 
suppose that N2 is a banach space. Let (fn } be a cauchy sequence in ~oo.W(NI, 
N2). For any fixed x C N  1 [[fn(x)-fm(X)[] ~ Ilfn -frnll  Ilx[I ~ ( f , (x )}  is a 
cauchy sequence in N2 and hence converges to some point y E N 2. Define a 
function f from N1 to N 2 by f(n) = lira fn(X). It is then easy to verify that 
f E  ~a (N1 ,  Nz) andf is  the limit of {fn}. 
[02] Since both linear and semilinear maps are also prelinear [P1] and [P2] 
are automatically valid for such maps. 
[D9] A sesquilinearform s on a complex vector space V is a function s: 
V x V-+ C which is a linear functional on V for any fixed first member of an 
element of Vx V and which is a semilinear functional on Vfor any fixed second 
member of an element of Vx V(In pure mathematics texts the convention 
used is that a sesquilinear form is linear in its first argument and semflinear in 
its second and is exactly opposite to that used in the preceding definition which 
however conforms with the convention used almost universally in quantum 
theory texts.) 
[D10] A sesquflinear form s on a vector space Vis said to be hermitian if 
s(x,y)  = s (y ,x )  V(x,y)  • VxV. 

A hermitian form s on a vector space V is said to be positive if h (x, x) >1 0 
Vx • V. A positive hermitian form h on a vector space V is called positive 
definite if h(x, x) = 0 ~, x = O. 
[P3] Let ( , )  be a positive definite hermitian form on a complex vector space 
V. Then 

I(x,y)i 2 < ( x ,  x ) ( y , y )  V x , y  E V (cauchy-schwarz inequality) 

Proof This is an elementary consequence of the assumed positiveness of the 
hermRian form. If either x = 0 or y = 0, there is nothing to prove. Suppose 
y 4= 0, expand 0 <. (x + ty, x + ty) and take t = - (y, x) / (y, y) .  The inequality 
follows. 
[P4] Let ( , )  be a positive definite hermitian form on a complex vector space 
V. Thenx ~+ (x ,x) l /2  defines a norm on V. 
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Proof. An elementary consequence of [D10] and [P3]. 
[D11] A vector space over C with a positive definite hermitian form defined 
on it is called a prehilbert space. 
[D12] A prehflbert space which is complete in the metric topology induced 
by its hermitian form is called a hilbert space (the hermitian form induces a 
norm and the norm induces a metric). 
[P5] A hilbert space is necessariy a banach space. 

Proof. Follows immediately from [D7] and [D 12]. 
[P6] ('llae Riesz representation theorem). L e t Y b e  a hilbert space. Let cby(x) = 
(y, x). Clearly (by E ~ ( ~ ,  C). The correspondence y ~ ~by is a norm preserving 
semilinear isomorphism between J/fandSe(3~, C ). (~(J~, C) is also called the 
dual o f~a). 

Proof. IIq'yll = sup i(y,x)l~<llYll 
tl x II = t  

Also I1@11 = sup i (y ,x) l  >~ I (y ,y / I l yN) I  = llyll 
II x II =1 

Hence the correspondence is norm preserving. Semilinearity is trivial to verify. 
To prove that the correspondence is onto, we must show that if • E~a(~,, C), 
there exists any  E ~ s u c h  that q,(x) = (y,  x ) .  I fKer  • = {x CX." ~(x) = 0} is 
the whole of3~, theny = 0 satisfies the requirement. I fKer  av @v~, let Ker ~I, = 
N. It is evident from the definition that f# is a linear manifold in ~ a n d  it 
follows from the continuity of • that it is closed. Hence it is a subspace of ~ .  
Since fq ~ o~,, f# l contains a nonzero vector z. It is easy to verify that y = 
(We)~ Ilzll2)z satisfies the requirement. To prove that the correspondence is 
one-one, suppose it is not, then 

• y (x) = (y, x) = (y', x)  = err, (x) Vx E J f  

~ ( y - y ' , x ) = O  V x E ~  

Take x =y  - y '  and conclude tha ty  =y ' .  
[P71 Let ~(~be a hitbert space. Let ~y(X) = ( x , y ) .  Clearly ~y E 6 ~ ( ~ ,  C). 
The correspondence y ~ qsy is a norm preserving linear isomorphism between 
Ygand 6eS¢(~, C). 

Proof. This is an immediate corollary of [P6]. 
[D13] Let N1 and N2 be two banach spaces. Let f: N1 ~ N 2 . f i s  said to be 

differentiabte at a point  x E N1 if there exists anfx E~,L~°(MI, ~2 )  such that 

IIf(x + u) - f ( x )  - fx(U)[I 
lim = 0. 

llull--, o tlull 

If f is differentiable at every point o f ~ l ,  then it is said to be differentiable in 
~1- In such a casef '  which assigns to eachx E ~  1 the derivativefx at that 
point is called the derivative off .  The derivative o f f ' ,  if it exists, is denoted 
b y f "  and is called the second derivative. Higher derivatives are defined 
analogously. 
[03] We have defined differentiability for a function defined on the whole of 
~1- It is, however, customary to define this for functions whose domains are 
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open subsets of ~1 .  The whole of ~1  is, of  course, an open subset of ~1 .  
[04] According to Cartan's (1971) definition f is differentiable at x i f f  is 
continuous at x and there exists a linear map from ~1 to ~ 2  satisfying the 
requirement in [D13]. Our definition requires fx to be continuous (cf. [P1]). 
Since the continuity o f f  implies that of fx  and vice versa the two definitions 
are equivalent. For a finite dimensional ~1 linear maps from ~1 to ~ 2  are 
necessarily continuous, hence the assumption of the continuity o f f  becomes 
superfluous in this case. Our definition in all cases requires the differentiability 
to imply continuity. 
[05] Let f: R n ~ R. In traditional elementary calculus of  many variables only 
directional (or partial) derivatives are defined and the directional derivative f~' 
in the direction of a vector a is a function from 1~ n to ~ and f~(x) is the value 
f~ takes a t x  and is a number. In our definition a defivativef '  is defined and is 
a function from 0~ n to ~o(~ n, R), f~ is the value f '  takes at x and is a linear 
map from ~n to ~ and f~(y) (y  E R n) is a number. The value f~(x) of the 
directional derivative of traditional calculus in terms of our derivative is simply 
f~(a/[la[I). Similar remarks apply about higher derivatives. 
[06] It follows from the definition of the derivative and [P6] that if a func- 
tional f on a hflbert space is differentiable at a point x E J~Fthen since fx is a 
linear functional there is a unique etement yx E X s u c h  that fx(u) = (Yx, u). 
[D14] From [06] we know that if a functional on a hilbert space is differen- 
tiable then the derivativef~ at x corresponds to a unique vectory x in such a 
way that fx(U ) = (3-%, u). This unique vectory x is called the gradient of f a t  x 
and is denoted by grad f(x). 
[07] The Riesz representation theorem gives us a coordinate free definition 
of the gradient for functionals defined on a hilbert space. In this approach it 
is no longer necessary to prove the invariance of grad with respect to a change 
in coordinates. 

The theory developed so far is equally applicable to both real and complex 
hilbert spaces. Nevertheless, for applications to quantum mechanics it needs 
important modifications. To formulate the mathematics involved in the 
applications, it is necessary to have some knowledge of the theory of measures 
and integrals which, in what fotlows, will be assumed (definitions of  terms 
which are used without explicit definition will be found in Halmos (1950, 
1957)). It will no longer be possible to indicate even briefly the main ideas 
involved in the proofs of the established results we need as many of these 
proofs are rather involved and complicated. However, most physicists are aware 
of the spectral theorem which is the main result we need and it is, therefore, 
hoped that what follows would be intelligible to the reader even though some 
of the definitions and proofs have been omitted. 
[D15] Let B be the borel algebra of the reals. Let g be the set of projections 
on the subspaces of  a hiIbert space. A spectral measure is a function E: B -+ 
g(X ~ EX) such that E~ = 1, E~ = 0 and for a disjoint sequence of sets {Xi} 
in B 

Eu.X i = ~. EX i 



330 C. S. S H A R M A  A N D  I. R E B E L O  

[D16] A linear continuous function from a hitbert space ~ ' t o  itself is called 
an endomorphism on ,~. 
[D17] Let A (x ~ Ax)  be an endomorphism on a hilbert space o~. A is said to 
be setf-ad]oint if (x ,  A y )  = ( A x , y )  Vx ,  y E~f .  
[D18] Let A be an endomorphism on ~ .  The spectrum A(A) of A is a subset 
of C defined by 

A(A) = {XEC:  A - M is not invertible}. 

[P8] The spectrum of a self-adjoint endomorphism on i f  is a subset of  N. 
Furthermore corresponding to each self-adjoint endomorphism on 3/¢~'there is 
a unique spectral measure E on the borel algebra B of the reals such that 

X E B  and X N A(A) = 4 ~ E x  = 0 

and fA Ex = A. 

Proof. See Halmos (1957). 

3. A Modified Calculus on a Complex Hilbert Space 

We first prove a proposition which asserts that except in the trivial case a 
semilinear function from a complex banach space to another normed space is 
not differentiable. This result explains why the calculus on banach spaces 
cannot be used directly for the study of optimization in quantum mechanics. 
[IX)] Let ~ be a complex banach space and let N be any normed space. Let 

f E  ~ ( ~ ,  N), t h e n f  is differentiable if and only i f f  = 0 which is the trivial 
case. 

Proof. Suppose that f is differentiable at x and fx is the derivative at x. Let u 
be any nonzero element o f ~ ,  then by the definition of differentiability 

lim IIf(x + tu )  - f ( x )  - f ~ ( t u ) l l  = 0 

t ~ R  Iltull  
l'--> 0 

t l f ( u )  - f ~ ( u ) l l  = 0 

llull 

~ l l f ( u ) - f ~ ( u ) l l = O  since I lul l~0 

~ f ( u )  = f~(u) (3.1) 

Also from the definition of differentiability 

l lf(x ÷ itu) -- f ( x )  -- fx(itu)ll  _ 
lim 0 
t e  ~ Ilitu II 
t--~O 

~f (u )  = - f~(u)  (3.2) 

Equations (3.1) and (3.2) together imply that f(u)  = 0, but u is any nonzero 
element o f ~ .  Hencef  = O. 
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If f =  0, it is, of course, differentiable w i t h f '  = 0. We are finished. 
All the functionals on a hilbert space which are defined with the help of the 

hermitian product are semilinear in one of the variables and so the great 
majority of functionals occurring in quantum theory are partly semilinear and 
therefore not differentiable. However, semilinear functionals are related to the 
linear ones by complex conjugation and both are equally smooth. By a modifi- 
cation of the usual definition of differentiability it is possible to develop a 
differential calculus which can deal with functionals which are semilinear. To 
avoid confusion we have decided to call the new differentiability by the name 
of semidifferentiability partly because differentiability implies semidifferenti- 
ability and partly because it is closely related to semilinear functions. 
[D19] Let ~1 andN2 be two complex banach spaces. A function f: N1 -+~2 
is said to be semidifferentiable at a point x E N1, if there exists a function 
f(S) E ~ ( ~ I ,  ~i~2 ) @ ~ - ~ 1 ,  ~2)  such that 

IIf(x + u) - f ( x )  - f(s)(u)lt  
lim = 0 

,n , -~o  tlull 
The function f(s),  if it exists, is called the semiderivative of f a t  x. If the function 
f is semidifferentiable at each point of  ~1 ,  it is said to be semidffferentiable in 
Nt I and the rule which assigns to each point x the semiderivative o f f  at that 
point is called the semiderivative of f i n  ~1 and is denoted b y f  (s). Higher 
derivatives are defined analogously. For example, the second derivative 

f(2s) ~ (~1, ~ ( N I  ,~a(~t ,  ~2)  ~)~5~(~I, ~2 ) )@ 

~o~ga( ~ 1, ~a(,~l, ~ 2 )C) ~G°(~.,~l, ~ 2 )))" 

[08] We will be mostly concerned with functionals on hilbert spaces, that is, 
the special case where ~1 =~f~aand ,-'~2 = C. For this case with the help of  [P6] 
and [P7] we immediately see that i f f  (s) exists, then it has a unique represen- 
tation of the form 

fff)(u) = <yx, u> + <u, zx> 

[D20] The unique pair o f v e c t o r s y  x and z x of [08] are called tingrad and 
semilingrad o f f  at x. 
[D21 ] A stationary point  of a semidifferentiable funct ionalfon • i s  defined 
to be a point x EJZasuch that 

f~s) = 0 

[09] f(s)  = 0 =* lingradf(x) = semilingradf(x) = 0 
[P10] Let A be an endomorphism on l a n d  let a E Jg. Let f l ,  f2 and fa be 
functionals on i f  defined by 

f l  (X) = (X, Aa ) 

f2(x)  = <a, a x  > 

f3 (x) = (x,  A x )  



332 

then 

C. S. SHARMA AND I. REBELO 

lingrad f l  (x) = 0; semilingrad f l (x)  = Aa 

lingrad f 2(x) = A 'a;  semilingrad f2(x)  = 0 

lingrad f a(x) = A ' x ;  semilingrad f 3(x) = A x  

Proof. The verifications, with the help of [D19], are quite straightforward and 
will be carried through f o r f  3 only. Set 

s '~) (u)  = (A'x, u) + (u, Ax) 

If3(x + u) - f3(x)  -f~s~;(u)[ 
lim 

llu,-*o ttull 

J(x + u , A ( x  + u)) - (x,  A x )  - (x, Au)  - ( A ' x ,  u)[ 
= lira 

,I,,,,-~o 11utl 

[(u,Zu)l  [IA[I Ilu[I z 
= lim ~< lim = lira i t A l l l t u t l = 0  

11.Jt-,o ttull tl~l-~o Null llull-,o 

[P11] The second semiderivatives of the three functionals defined in [P10] 
are given by 

¢}g~)(,,)(~) = f~x 2~ (u)(~) = o 

f(a ~xS) (u)(v) = ( u, Av ) + ( v, Au ) 

Proof Elementary. 
[P12] Let f l  : Jr-+ C and f2:9~ a-+ C be two functionals semidifferentiable at 
x E ~ .  Then F: J~-+ C defined by F(x) = f l ( x ) f 2 ( x )  is semidifferentiable at x 
and 

F (s) (u) = f l  (s) (u)f2(x) + f l  (x)f(~) (u) 

J F(x + u) - F(x) - fl(S)(u)f2(x) -fl(x)f(2~)'(u)J 
Proof. lira 

, ~ , - - o  Ilull 

= l i m  1 Ilull-~o ~ I [fl(x + u) [f2(x + u) - f 2 ( x )  - f~)'(u)] 

+ f2 (x )  [ f l  (X + U) -- f l (X)  -- fl(x s) (U)] + f2  (s) (U) If1 (X + U) -- )el (X) ] ] i 

~< lim [ l f l ( x + u ) [  I f 2 ( x + u ) - f u ( x ) - f ~ ) ( u ) t  
, u , - , o  [ Iiull 

l f l (X + U) -- f l ( x )  - f ( l~) (u) l  
+ [f2(x) I Ilull 
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where we have used the definition of semidifferentiability and the continuity 
and boundedness off1 ,f2 and f ~ ) .  
[P13] Let ~ i ,  ~2  and N3 be three complex banach spaces. Let f l  : ~1 -+ ~2  
be semidifferentiable at x E :B I and f2 :N2  -+ ~3 be semidifferentiable at 
f l  (x) E ~2 .  Then F = f2 o f l  : N1 ~ N3 is semidifferentiable at x and 

Proof. A computation very similar to the one used in [P12]. 
[P14] Let f: N1 -> ~2 be a (n + 1)-times semidifferentiable function and let 
[[f((n + 1) s)1} ~<M 
then 

..J~u~Jn+l 
1 n timeS, U ) ~tVlll 11 ilf(a + u) - f ( a )  - f(s)(u) - . . .  n! fa(nS)(u . . . .  N n! 

Proo f  A check of Cartan's (1971) proof of the similar formula for a (n + 1)- 
times differentiable function shows that semidifferentiability is enough for the 
validity of the proof. 

4. Applicat ions to Quantum Mechanical Problems 

As an example of the applications of the calculus developed in the 
preceding Section to quantum mechanical problems, we give a simple, elegant 
and rigorous proof of a generalization of an earlier result of Sharma (1969) 
concerning upper and lower bounds for a certain class of quantum mechanical 
sums. 

Let H o be a self-adjoint endomorphism on • and  let H 1 be any endomor- 
phism o n ~ .  Let e! o) be an eigenvalue o f H  o of finite multiplicity and such 
that A'(Ho) = {X: X E A(Ho) & X < e} °) } is a finite set consisting of eigenvalues 
of finite multiplicities. The labeling index i on the eigenvalues arranges them 
in a monotonically increasing sequence. Our example concerns the evaluation 
of a sum of the kind 

Si,,.,s = - I (X-- e} °) + ~)r((X - e~ °) + ~)2 +/32 }S~ll~xal~O)l[2 

A(H°)/{e}°) } (4.1) 

where E is the spectral measure of rio, r and s are integers (positive, negative 
or zero), a is a real number such that e} °) - a ~ A(Ho) ,/3 is any real number, 
qs} °) is a given eigenvector o f H  o belonging to the eigenvalue e} °). As in the 
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earlier work of Sharma (1969) we define positive numbers r' and r" by 

r '=½ ([r l  +r)  

r" = ½ ( I r I - r) (4.2) 

Positive numbers s' and s" are defined analogously. 
With the help of spectral analysis it is not difficult to verify that 

~(0) + a)lr l((Ho _(0) + 002 + 132)151(1 Eei(o))~ ) - S i ,  r ,s  = 011, ( H  o - ei - ei - -  

: - < , v ,  ( 1  - - + - e }  ° )  + + ° )>  

(4.3) 
where ~I, is any solution of 

(H 0 - e} 0) + a)lrt((Ho - e} 0) + a) 2 + 132)1s1(1 _ Eei(o))~ 

.(o) + a)r' ((Ho - e} °) + a) 2 + 132}s'nl*}°) = 0 + (1 - Ee[o))(H o - ¢i 

(4.4) 

In fact with our earlier assumption about co(e} °) - a ~ A(Ho) ) it is easy to 
prove that this equation cannot have more than one solution in Jta@~z(o) 
where~t~ei(o) is the eigenspace of  H o belonging to the eigenvalue e} °). This 
enables one to construct the generalized hylleraas functional 

Ei, r , s ( ~ )  = (~ ,  (Ho - e} °) + a) tri ((Ho - e} °) + a)2 + 132}Ist(1 _ Ee,<o))'-IJ) 

_ _ _(o) + a)r' {(Ho _ ei(O) +a)2 + 132 }S'H1 ¢}o) ) + ( ~ , ( 1  Eei(o))(H o e i 

+ (qb} 0) , e~l ( l  - Eei(o))(n 0 - 6f 0) + 00r '{(no - e} 0) + 00 2 +/32 }s"~I t} 

(4.5) 

This is a symmetrical functional and its lingrad and semilingrad are identical 
and equation (4.4) is satisfied at its stationary points. However, from [P14] 
Ei, r, s is a minimum i f ( H  o - e} °) + a)lrl{(Ho - e} °) + a )  2 + 132}151 is a positive 
operator and maximum if this operator is negative. If I r t is even then El, r, s is 
a minimum and provides an upper bound for the sum. However, in general, 
Ei, r, s is neither an upper bound nor a lower bound. Suppose there exists a 
positive integer N such that for any integer t ~>N 

{e~o) _ e}o) + a}l r f >  0. (4.6) 

In order to obtain an upper bound we now define a modified hytleraas 
functional by 

E[,r,s =Ei, r,s - 2 (e(nO) - e} O) .t¢ilrlf(~(o) e(o) +~x)2 +132)IsI 
- -  ~ J '  k ' , . ~ n  - -  i X 

n<N 
n~i  

'i Een(o)H1 ~p,o) 2 
Een(°) * + (e(°) -- e} °) + a ~  ~ e~. O) + a) 2 + t32 }s" (4.7) 
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By considering the second semiderivative of  the funct ional  we see tha t  the 
s ta t ionary point  o f  this funct ional  is a m i n i m u m  if 

~ ( 0 )  + a ) ( r L  ( H  ° _ e~o) + a),r{{(Ho _ e!O) + a)2 + 32)is{ _ ~ (e(o> _ ei 
n < N  

n=i 

((e(o) _ e!o) + ~)2 + 32) i~%n(o ) (4.8) 

is a positive opera tor ,  bu t  this is, o f  course,  so because of" the way E~,r,s has 
been defined. At  the  e x t r e m u m  of  E~, r,s we have 

( H  o - e} °) + a ) l r l ( (Ho - e} 0) + a)  2 + ~2}lsl(1 _ E [ ° ) ) ~  

~(0) + a)2 +/32}S'HlCI)}O) .(o) + ~ ) ~ ' ( ( H o  - ~i + (1 - E ,}° ) ) (H o - ~i 

_ 
n < N  

[ n ~i Een(O )H1 (b~ O) 
_ _(o) + ~ar"r~Ao) e(o) + a)2 + 32} ' s ' ]  = 0 (4.9) ~ E ~ ( o ) ~  (e(o) ~i ~v ~ ,  - i 

+ 

It  is no t  difficult  to  see tha t  solut ions o f  equat ions  (4.4)  and (4.9)  have unique 
and identical c o m p o n e n t s  in 3¢f@(Jfe} o) @ 3~fe(o)) and their c o m p o n e n t s  in 

n < N  
r t~c  

~ i ( o )  are comple te ly  arbi trary.  Fur ther  a solut ion o f  equa t ion  (4.9)  can have 
an arbi t rary  c o m p o n e n t  in @ YE~en(O ) also. The values which the two  func- 

n < N  
nv~ i 

tionals Ei,r,s and E~ r, s take at any  pair of  solut ions of  equat ions  (4.4)  and 
(4.9) are identical ly same with  the  value of  the  sum we wish to evaluate.  

In  order  to obta in  a lower bound ,  we now define ye t  another  modi f ied  
hylleraas funct ional  by  

Ei, r,s" = Ei,r,s - teN" (o) _ e~O) + a ) - r ' ( ( e ( ~ )  _ e~O) + (x)2 +/32}-s" x 

_(0) + t~)2 + fl2}s'+2s"(1 __ Ee¢O))~)  [ ( ~ ,  (He - e} °) + a ) r '+2 r " ( (Ho  _ e i 

_(0) + ~)2 + 32)S'Wl (I)}O)) + ((1 - Eei(o))Hleb} °), ( H  o - e} 0) + a)r  ((He - e i 

~(o) + oOz + 32}s"+s' ~p, (1 - E¢i(o))Hl~} °)) + ( (H  o - e} °) + a) ' r"+r '{(Ho _ e i 

, _ .(o) + a ) r ' + r " ( ( H o  _e}O) + a ) 2  + ~2} s"+s'.4,)} + ((1 -- Eei(o))Hleb} °) (H o e i 
+ - t c r  _ _  [t%(O) ~(0) a.,.~h r 2r H'c(O) ~(O)+,vh2 +t~21s+s  

+ . . . . . .  ,'7 
~ ,  / re(. o) - e.(°) + a y  {(e(. °) - e(. °) + c~) 2 + ~2)  

n < N  u ". 1",I t ". Jv t 
n $ i  ] 

.(0) + a)2  +,~2)t ,[  _ _ + _ × 

tt t 
- -  ~o )  (4.10)  _-(o)  +a) t(en --e  i + a )  2 + 3 2 )  4' E~,(o)'I' + (e~) ~i 
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This functional has been constructed in such a way that the component of  any 
of  its stationary points inOffO(S~ei(o) O Often(o)) is identical with the corres- 

n<N 
n~-i 

ponding component o f  the solutions of  equations (4.4) and (4.9) and the value 
which the functional takes at any stationary point is the value o f  the sum we 
wish to evaluate and this value is a maximum. These claims can be easily verified 
by considering the first and second semiderivatives of  the functional. 

It should, of  course, be pointed out that the positivedefiniteness (negative- 
definiteness) of the second derivative at a stationary point does not guarantee 
that the functional is a minimum (maximum) in an infinite dimensional vector 
space (a counterexample demonstrating the truth of  this assertion has been 
worked out  by S. Mare who will publish the result in due course and will report 
it also in his thesis which he plans to submit to the University of  London for 
a Ph.D.). However, in the functionals considered above third and higher deriva- 
tives vanish identically and in such cases the positivedefiniteness (negative- 
definiteness) of  the second derivative (semiderivative) is enough to guarantee 
that the functional is a minimum (maximum). 

The proof  given here is more rigorous and the results are more general 
than those of  Sharma (1969). The generalization removes the requirement o f  
nondegeneracy of  the eigenvalues. Furthermore, the method is completely 
coordinate free. However, it must be pointed out that it has been assumed 
that H o is a self-adjoint endomorphism whereas H 0 in quantum mechanical 
problems is usually an unbounded operator which cannot be continuous at 
any point. However, i f P  is the projection on any finite dimensional subspace 
then PHoP is an endomorphism and since a variational calculation, because of  
its very nature, has to be carried out in a finite dimensional subspace, this is 
all we need. 
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